Category Archives: Engineering Plastics

Machined or Molded Plastic Parts – What Are the Differences?

A plastic part by any other name would still be a plastic part, wouldn’t it? Yes it would. But the way those plastic parts produced; either by molding plastic parts or by machining plastic parts are dramatically different. Those differences in the process of making plastic parts can result in big differences in lead times, cost, and quality. Below are things to consider when looking at how to manufacture plastic parts and some answers that may help you to decide.

How Many Plastic Parts do you Need to Make?

MOLDED: Molded Plastic parts have been around since the first machine for the process was patented in 1872 by John Wesley Hyatt and his brother Isaiah so its easy to see how this became one of the standard processes for creating plastic parts. Mold machines are used to run mass produced plastic parts from tooth brushes to auto parts and everything in-between. Creation of the mold(s) costs thousands of dollars, requires time up front to make the mold(s) and the molds require maintenance over their life and storage when not in use.

MACHINED: Depending on the project, volumes from 25 to 5,000 parts can often be machined more cost effectively than molded. For small parts, you may have a lower final cost by using high performance screw machines that can run circles around expensive multi-cavity molds. This means shorter lead times than molded parts and little up front cost. Machined parts don’t require secondary machining to clean a part once it is ejected from the mold.

Will You Need to Make Changes to Your Part Design?

MOLDED: Parts made from molds require that the mold be made first which is more time and expense up front. In addition a mold will require maintenance over it’s service life and storage space when it isn’t in use. Changes to a mold are costly in terms of time and dollars to either change or make a new mold, depending on the changes needed.

MACHINED: Machined parts allow for shorter lead times and flexibility in making design changes because they are run directly from a CAD file. Overall, machining can be used to create very complex parts including parts with undercuts and thick walls and the materials are more homogenous across the length and width of the part.

How Important Are Tight Tolerances and Dimensional Stability?

MOLDED: Every plastic behaves differently. But in general plastic parts made from molds may not be as dimensionally stable as machined parts. There is more chance the parts will not be as homogeneous across the length and width of a part. The molding process is not ideal for large parts or where there are thick walls. Tolerances of +/- .005″ are typically the best that can be achieved in molded parts. This compares to +/- .001″ for machined parts.

MACHINED: Many of today’s high performance engineering plastics, such as DuPont Vespel, PEEK, PBI or others can take extreme temperatures of 250 or even 450 degrees and remain dimensionally stable. Many of these materials are also chemical resistant. Additionally machined parts have less internal stress and tolerances of +/- .001″ or better can be achieved.

How Large or Complex Are Your Parts?

MOLDED: Small to mid-size plastic parts can work well. Large volumes can be run fast. But large plastic parts with thick walls, or complicated undercuts can be an issue for mold design. Materials cooling at different  temperatures within a mold can result in more internal stress and a less homogeneous material. Undercuts can pose a mold design challenge with how to release the part from the mold. Plastic parts fresh from the mold may require secondary machining to remove flash, parting lines, or ejector marks, adding to production time and cost.

MACHINED: Large parts and parts with complicated undercuts can be made quickly and efficiently by machining processes. Thick cross sections will have higher, more consistent mechanical properties. Again, because there is no mold to be made, the up front investment and lead time is much shorter. Machining also handles threading extremely well and machined parts will have no parting line, ejector marks, or flash. The availability and selection of engineering plastics means many prototypes can be made in production-equivalent materials. Plastics are more often being found to be a good alternative to metals. They can often be machined on the same equipment and many high temperature engineering plastics offer features such as lightweight, flexibility, high strength, resistance to corrosion, excellent durability, high heat tolerance and chemical resistance. Some plastics, such as those for bearings even require little or no lubrication making them even more cost effective on the service end.

The moral of this blog – a plastic part by any other name is still a plastic part but how you get to create that part could make all the difference in the world. Molded plastic parts have their place, but before going down the path of investing in molds it may be worth a little time considering the questions in this blog and determining if molded or machined is the best option.

 

See you in the blogosphere again soon!

Lisa Anderson

Marketing Manager
ThyssenKrupp Materials, NA
AIN Plastics Division

www.tkmna.com

Understanding Engineering Plastics

This week we decided to bring you a little bit of a different way of looking at engineering plastics. We hope you find this info graphic helpful in determining the differences between various types of engineering plastics and how factors like heat and chemicals can affect these materials.

Infographic-EngineeringPlasitcs07-13

Extruded or Cast Nylon – Material Testing Shows Differences

If you are a user of Nylon materials do you use extruded or cast nylon? Do you always use one vs. the other? Material testing shows there are differences between extruded and cast nylon materials that may warrant a good look at a Technical Data Sheet before you make your material selection.

The Top 5 Differences between the more traditional extruded nylon and cast nylon materials are:

5 – A cast nylon material inherently has less stress than extruded nylon

4 – Lower moisture absorption gives cast nylon a higher dimensional stability than extruded nylon

3 – The more crystalline structure of cast nylon gives it a higher strength than extruded nylon

2 – Cast nylon is available in smaller diameter rod than extruded nylon is when looking at premium bearing grades

1 – Cast nylon has a 20 degree higher operating temperature than extruded nylon

The table below shows a comparison chart between a typical cast nylon and a typical extruded nylon. In this case we are looking at Property Comparison of Nycast® 6pa – Natural versus Extruded Natural Nylon 6/6 

Property  Units  ASTM Test Method Nycast ® 6 pa Natural Extruded Nylon 6/6
Specific Gravity  g/cm3 D792 1.15-1.17 1.15
Tensile Strength  psi D638 10,000 – 13,500 11,500
Tensile Elongation  % D638 20 – 55 50
Tensile Modulus  psi D638 400,000 – 550,000 425,000
Compressive Strength  psi D695 13,500 – 16,000 12,500
Compressive Modulus  psi D695 325,000 – 400,000 420,000
Flexural Strength  psi D790 15,500 – 17,500 15,000
Flexural Modulus  psi D790 420,000 – 500,000 450,000
Shear Strength  psi D732 10,000 – 11,000 10,000
Notched Izod Impact  ft.lbs./in. D256 0.7 – 0.9 0.6
Hardness, Rockwell  R D785 115 – 125 115
Hardness,  Shore D D2240  78 – 83 NV
Melting Point  deg. F D789/D3418 450 +/- 10 500
Coefficient Of Linear Thermal Expansion  in./in./F D696/E831 6.1 x 10 (-5) 5.5 x 10 (-5)
Deformation Under Load  % D621 0.5 – 2.5 NV
Deflection Temperature:  264 psi deg. F D648 200-400 200
Deflection Temperature:  66 psi deg. F D648 400-430 N/A
Continuous Service Temperature  deg. F 230 210
Intermittent Service Temperature  deg. F 330 NV
Coefficient Of Friction: Dynamic  D1894 0.22
Water Absorbtion – 24 Hours  % D570 0.5-0.6 0.30
Water Absorbtion – Saturation  % D570 5.0-6.0 7
Dielectric Strength  500-600 400
Dielectric Constant 60 Cycles  3.7 3.6
1000 Cycles  3.7 3.6
100,000 Cycles  3.7 3.6

(The facts stated in the above table are based on experiments and information believed to be reliable. No guarantee is made of the accuracy, however, and the products are sold without warranty, expressed or implied, and upon the conditions that purchaser shall conduct their own test to determine suitability for their intended use.)

Although it may not always make sense to choose a cast nylon over an extruded nylon material, characteristics of cast nylons can ultimately mean longer wearing parts and in applications such as bearings, nylon wear pads, or gears, that can mean less downtime of equipment, less maintenance and improved operating costs over time.

 

See you in the blogosphere again soon!

Lisa Anderson

Marketing Manager
ThyssenKrupp Materials, NA
AIN Plastics Division

www.tkmna.com

It’s all About Plastics!

Welcome to thyssenkrupp Engineered Plastics on the Bloggesphere!

I’m Lisa, Marketing Manager here at tkEP and I’ll be your regular host to everything on our blog. I hope you’ll check in often to see what we’ve added. In fact, feel free to subscribe and that way you’ll get updates as they happen. Don’t forget to comment too. We are looking to make this a forum for conversation about what is happening in the plastics industry.

The thyssenkrupp Engineered Plastics History

We began way back in 1970 with the founding of AIN Plastics. This plastics distribution company started with just two employees and a small investment and a big dream. The owners worked hard and saw continual growth of their new company within a short time. A big break came when AIN Plastics became authorized distributors for several premier manufacturers of mechanical plastic mill shapes. In 1993, AIN Plastics was appointed E.I. DuPont’s first national distributor of Vespel® PolyImide stock shapes, one of the industries most sophisticated materials. The ensuing years saw the company continuing to expand its product offerings, including specialty grades of nylon, Delrin®, PTFE, Ensinger’s TECA line, thermoset laminates and more.  In 1996, AIN Plastics joined the ThyssenKrupp Materials NA group (then Thyssen Inc., NA), a move which positioned the company for continued success.

In 2015 ThyssenKrupp underwent a major rebranding with a new logo and renewed presence in their markets across the globe which include steel and metals distribution, aerospace, elevators, and more. In 2016, AIN Plastics followed suit by rebranding and changing their name to thyssenkrupp Engineered Plastics.

Today, thyssenkrupp Engineered Plastics Plastics operates 11 stocking warehouses with sales offices across a major portion of the United States. tkEP also has two machining facilities. The company is structured around local distribution service centers providing fast, efficient delivery to their customers. Our value–added processing system is customer–based, designed to give salespeople the tools they need to quickly and accurately process orders. Finally, our nationwide logistics system allows the company to provide next–day delivery to the majority of customers in North America. As part of our commitment to continuous quality improvement, tkEP Plastics has several ISO 9001:2000 facilities and is in the process of registering all locations to the latest ISO 9001:2000 Quality Management Systems. Geographical and product line expansion ensure that the history of this dynamic company will continue to evolve.

So there you have it – this is who we are and we are ready to have some fun sharing what’s going on so look for more posts!

Until next time!

 

Lisa