Category Archives: High Performance Plastics

Detectable Materials: An Important Piece of the Food Recall Solution

There is no one magic thing that will stop food recalls from occurring.  Ultimately it involves every aspect of a food business from Safety and Quality teams to maintenance, to people working on the line. Every little bit helps. When it comes to equipment in food processing facilities, whether it’s a chute, a conveyor, an oven or mixer, more and more often quality, maintenance, and engineers are turning to detectable materials as another avenue to help reduce food recall incidents.

Detectable materials have been designed by top engineering plastics manufacturers and extruders including Ensinger and Quadrant Engineered Plastics specifically for the food industry. Each one is FDA compliant for direct contact with food so they can be used in numerous applications. Download Ensinger’s white paper and our Materials Guide for the Food Processing Industry for more information.

Breaking Down Detectable Materials for Application Use

There are four main types of detectable materials: Visible, Metal Detectable, X-Ray Detectable and Ultra Detectable (this combines all three methods). As an engineering plastics distributor thyssenkrupp Engineered Plastics streamlines your selection process because we stock both Ensinger and Quadrant Engineered Plastics materials. In addition we train and work with our manufacturers on a regular basis and we work with customers like you everyday, helping you to solve your material selection challenges. Each detectable material has it’s own characteristics and properties, so its important to evaluate any potential plastic material on your equipment and in your environment to ensure it works as you need and expect it to. It can take time, but we can help to pare down the initial list of many materials to a few based on our experience and knowledge making the task easier for you. In addition we look not only at materials but, which is the best to balance performance and value for your application.

Free Downloads to get your started on plastics for food processing applications

Our materials guide is an excellent starting points if you want to learn more about these specialized materials, how they work, their compliance to FDA and other standards and more. Our guide also includes a comprehensive selection of materials for all sorts of food processing needs from cutting boards, clear plastics, materials for plant signage and more.

Along with Ensingers White Paper and our catalog onlineplastics.com is another excellent resource to materials for the food processing industry. It’s fast, easy and mobile friendly 24/7 access.

Most of all – give us a call at 877.246.7700. We are a team of real people with real hands on plastics experience and when it comes to pairing applications with materials that can sometimes be the best help of all. We know it isn’t about finding a plastic, it’s about finding the right engineered plastics solution for your application.

If you are interested in pricing, complete a request for quote here. Let us know which material, the size and quantity and we will get back to you with pricing and lead times.

[goal id=”2770″]

 

 

Engineered Plastics Solutions – PEEK

When it comes to engineered plastics solutions PEEK is right near the top. In fact, at thyssenkrupp Engineered Plastics we give PEEK stock shapes Super Hero Status because of it’s multiple “Super Powers” which include:

  • Excellent Impact Strength
  • Very high continuous working temperature, up to 482˚F
  • Great resistance to steam, perfect for autoclave
  • Good wear and abrasion resistance, can be enhanced with fillers
  • Able to absorb high doses of gamma radiation
  • Great upgrade from PTFE
  • Low smoke and toxic gas release  
  • Carries a UL94 V-O Rating

In addition to the many features and benefits of PEEK plastic, this material gets even better when you factor in the variations and grades of PEEK. Fillers aid in enhancing specific properties and grades can help meet specific requirements like FDA while a general grade may cost a little less. These can allow you to dial in and get the biggest bang for your dollar and ultimately have a part that truly fits the needs of your particular application.

  • PEEK Is Available In Grades to Fit Your Specific Needs
  • General Purpose Grade 
  • (Unfilled) Exhibits high purity, high toughness, and high elongation
  • FDA Compliant Grade
  • For high temperature food applications
  • Bearing Grade (HPV)
  • (Carbon Fiber Reinforced with Graphite and PTFE)
  • Life Science Grades
  • (Approved for USP and ISO 10993-1)
  • Semiconductor Grade
  • (SEMITRON® MP370) Use in Test Sockets and Wafer Cones
When you are looking to replace metal parts or improve the performance of a plastic part ask us if PEEK might be a good alternative. While its true that, as you move toward the top of the triangle, engineering plastics and high performance materials may have an initial higher cost, but upon closer analysis many customer have found the benefits far outweigh the cost and, in the long run they find savings and value through improved part life performance and more.

Business Development Team – Adds Value to Buying Through Distribution

TKMNA AIN Plastics Business Development Team Is Dedicated to Providing Solutions to Your Engineered Plastic Needs.

As a Distributor of Engineered Plastics we serve many Industries.  We supply Fabrication Machine Shops as well as OEM Manufacturers.  We work with Design Engineers, Product Developers, Maintenance Specialists, and more. Serving so many industries provides many challenges, so how does AIN Plastics maintain a high level of customer service, satisfaction, good value, and keep up with the thousands of options available in engineered plastics? We have a team. That team includes the Inside and Outside Sales people everyone works with on a day to day basis. We also have 11 branches throughout the US operated by Branch Managers and Fulfillment teams. But we also have an additional team of Industry Segment Managers, (aka Business Development Team) who work across all AIN Plastics locations. This team is comprised of members that between them hold an incomparable amount of knowledge and passion in key industries we serve. Their goal is to assist both the AIN team and our customers by providing knowledgeable support. That support may include training and education, evaluation of applications for material selection and problem solving. In addition the Business Development team uses their depth of Engineered Plastics to find applications that may benefit from an Engineered Plastic solution over traditional materials like metals.

Each Industry Segment Manager focuses on one of the following industries:

  • Oil and Gas / Pump and Valve
  • Power Distribution
  • Medical and Life Sciences
  • Orthotics and Prosthetics (O&P)
  • Transportation

In addition we have an Industry Segment Manager that focuses solely on the high performance DuPont™ Vespel® materials which are often specified by Design Engineers for applications in Aerospace, Plastics Processing, Semiconductor and other highly demanding industries.  By focusing on how we can assist people and educate others in the proper selection and use of engineered plastics we have found we can help customers find ways to improve or enhance applications, reduce costs, and improve efficiency and safety. The AIN Plastics Business Development team all have hands on experience within the plastics industry and in machined parts that provide a base of knowledge they each build on. Because we work with all the major manufacturers of engineered plastic materials, we have the widest selection of products to consider for solutions.  Our Industry Segment Managers also have the opportunity to constantly add training and knowledge to their skills directly from the manufacturers and then share it with customers. We see our job as a distributor as an opportunity to make your job easier and your business successful. In essence we see ourselves as a bridge between customers and suppliers and a partner who brings value.

Meet the Business Development Team

Oil and Gas / Pump and Valve –

Kendall Montague - Business Development Oil and Gas Industry Segment ManagerEmail: Kendall.Montague@thyssenkrupp.com

Phone: 314-502-0813

Kendall Montague is a veteran of the plastics industry with over 15 years of experience. He earned a degree in Economics from Southern Illinois University.  Previous to that Kendall enjoyed a 10 year career as a PGA Club Professional in the greater St. Lous area. After that he transitioned into the plastics industry. Through the IAPD, he has earned the Level 1 and 2 Professional Sales Certifications. Kendall was attracted to AIN Plastics after meeting thyssenkrupp Materials NA, AIN Plastics Division President John Shepherd during a national materials conference.  John’s enthusiasm and vision were shared with Kendall during a team building exercise, and Kendall was left with an impression of the organization that directly aligned with his value-added selling approach. Kendall focuses on working with OEM and MRO Engineers throughout the Oil and Gas industry assisting them with application specifics in thermoplastics material selection. He has also helped develop custom design fabrications that work well with specific CNC equipment. His fabrication experience, a skill learned early in life from his father and developed during his career, is also a valuable tool he brings.  His typical focus applications include bearing, valves, and pump components found in the Oil and Gas markets.

In his spare time Kendall loves being physically active, and especially enjoys biking, running half marathons, and hiking. His passion for running connected him with a fitness group called Road Runners Club of America (www.rrca.org) and he is now one of the over 4,600 members here in the USA, and 16 other countries. Team members can be distinguished by their signature purple camouflage apparel in races and club members range in age from 4 to 85. The group’s only requirement is that, “you have a true desire to maintain and improve your own fitness.” When he’s not participating in half marathons, Kendall enjoys spending time with his childhood sweetheart Jennie whom he met at the age of 13. Home base for Kendall is in the greater St. Louis area but he travels to customers throughout the US to provide hands on support.

Trevor Drake - Business Development - Power Distribution Industry Segment ManagerPower Distribution –

Email: Trevor.Drake@thyssenkrupp.com

Phone: 248-233-5600

Trevor Drake is AIN Plastics Industry Segment Manager for the Power Distribution Industry. Trevor has a well rounded background in business and industry. He is a Canada native who got his start as a plant supervisor in the automotive industry after graduating from the University of Windsor. After completing his MBA in Business Finance, Trevor joined thyssenkrupp Materials NA where he worked as part of the finance team before focusing on Sales and Marketing. Trevor has been with the AIN Plastics Division for over 10 years.

Through his diverse career, Trevor has developed key skills that are of great value.  His vision on Proficiency, the importance of urgency, and his entrepreneurial spirit serve him well. In addition he brings valuable insights from his time in manufacturing plants. Trevor spends his time in the Transportation and Power Generation sectors, focusing on Insulating materials like GPO, Phenolics, Polycarbonates, and other Engineering Plastics.

When Trevor is not working to create solutions for his customers, he enjoys watching his two sons and his daughter develop their talents in sports. He appreciates that he can continue to do what he loves while still enjoying the climate and atmosphere of Canada.

Dave Piperi - Business Development - Medical Life Science Industry Segment ManagerMedical / Life Sciences –

Email: Dave.Piperi@thyssenkrupp.com

Phone: 914-490-1438

Located in the New York, New Jersey area is Industry Segment Manager Dave Piperi.  Dave is an expert in the Life Sciences, Medical, and Analytical Instrumentation Markets.  Dave’s experience in our business is very deep.  Starting as an Inside Salesman gave him a strong education in Engineering Plastics.  Moving to Outside Sales, then Branch Management expanded his experience.  He was particularly interested in AIN Plastics because of its leading role in supplying High Performance Medical Grade Materials.

Dave has assisted customers and led AIN’s growth by developing applications for lab testing equipment used throughout the analytical and bio-pharma areas. Dave supports customers and design engineers by working with them and sorting through the many requirements (including specific industry certifications) and providing engineered plastic solutions. These solutions deliver real world benefits that help improve their products, increase service life and more.

Outside of his work at AIN, Dave enjoys time with his family, watching his son play sports, and relaxing on the beach.

Paul Hanson - Business Development - DuPont Vespel Industry Segment ManagerHigh Performance Materials / DuPont™ Vespel® –

Email: Paul.Hanson@thyssenkrupp.com

Phone: 770-362-9712

For high performance DuPont™ Vespel® Material, Paul Hanson is the go to person. Paul has been working in the Plastics Industry for over 23 years, with experience in the Manufacturing as well as Distribution fields. After earning his Bachelors Degree in Business Finance and his MBA in Business Administration, he moved from Minnesota to Georgia to enter the Plastics Business. Paul has held management positions in Manufacturing and Distribution, as well as Field Sales and Training, Paul has a unique depth of experience in the field.  He was attracted to AIN Plastics because of the company’s long history as a leader in Engineered Plastics.  As an Industry Segment Manager Paul uses his expertise to support the AIN Sales team and their customers in the selection of the right materials for specific applications, often replacing metals and other traditional materials with plastics.  Paul works closely with the DuPont™ Vespel®  organization and brings that experience to our customers, focusing on the Aerospace and Semicon Industries.

Outside of AIN, Paul enjoys spending time with his wife of 32 years, Sara.  They enjoy golfing, traveling, and spending time with their families.  On many weekends you can find him at his brother in law’s drag-strip in Middle Georgia.  His goal is to be racing there soon in a hot Camaro!

Scott Moore - Business Development O&P Industry Segment ManagerOrthotics and Prosthetics –

Email: Scott.Moore@thyssenkrupp.com

Phone: 813-215-8323

Scott Moore is a Florida native who leads our efforts in the Orthotics and Prosthetics Marketplace.  Scott studied Criminal Justice Standards at Polk State College, but soon found his way into the Plastics Industry.  His 20 year career started as an Inside Sales Representative for one of our strategic suppliers, Quadrant Engineering Plastics.  That experience led him to promotions at Quadrant including Inside Sales Manager, Territory Manager, and Team Leader for the Power Transmission Division.

He joined AIN Plastics Business Development Team in 2010 where he focused on DuPont™ Vespel® and Medical Grade Materials. Scott moved back to Florida as the Branch Manager for AIN Plastics Tampa, where he became heavily involved in the growing demand for Orthotics and Prosthetics materials. His materials experience was valuable in rapidly growing our position in this market.

Scott has developed special labeling for our O&P thermoforming products which is of great help to the industry.  He has also expanded our offerings to include adhesives, foams and cork, creating a full market basket. Most recently Scott introduced a unique clear unbreakable material that is ideal for  check / test sockets. As our Industry Segment Manager for O&P, Scott spends his time working in the Field with our Sales team as well as managing the relationships with our National Accounts.  Scott leads our efforts to bring AIN Plastics O&P Materials online as an OPIE Integrated Supplier.

At home, Scott enjoys spending time with Diep, his wife of 14 years, and their two daughters Kayla and Kara. He also finds time to continue his passion for playing the drums, a lifetime enjoyment. He also loves to fish and hunt, and most recently teaching one of his daughters to fish as well.

Thomas Price - Business Development, Transportation Industry Segment ManagerTransportation –

Email: Thomas.Price@thyssenkrupp.com

Phone: 678-230-7944

When it comes to materials for the Transportation Industry, Thomas Price is our resident expert and Industry Manager.  Thomas has over 20 years of Plastics Industry Experience, from Key Account Management to Branch Distribution Management. A graduate of West Virginia institute of Technology,  where he studied Design Engineering, Thomas brings great skills to AIN Plastics.  His primary focus has been on Engineered Plastics used in Aerospace, but also is an expert in Transit and other related Transportation fields.  The newest of the AIN Business Development team, Thomas joined in 2014.  He was attracted to AIN Plastics because of the professionalism displayed by the company, and his familiarity with the transportation industry.  Thomas prides himself on being able to relate to the issues of his customers, as well as the product manufacturers.  He takes an active role in problem solving throughout the supply chain, which makes him a valuable member of our team.

Thomas works out of the Charlotte, North Carolina area, but you can find him most anywhere in North America where Aircraft Interior components are designed, manufactured, and installed.

In his spare time he enjoys being a loving father to his three girls, participating in competitive target shooting, and many other outdoor activities.

In the world of engineered plastics finding the right material can seem like looking for a needle in a hay stack. As an Engineering Plastics Distributor we look to add value not just by carrying the most demanded products, from all of the Major Manufacturers, but also by being experts in the use and selection of these materials.  We can also help you in the Fabrication of these materials into parts … from prototype to full production runs.  Through our Business Development Team and Sales Team we live in the manufacturing plants of America, and we are happy to consult and teach what engineered plastics can do for you. Do you need to reduce noise? Do you need parts that last longer?  Would you like to eliminate the need for lubrication?  If you answered yes, then we can help. As your trusted partner in the distribution supply chain, we look not just at selling a piece of plastic but at providing Engineered Plastics Solutions that help you to get the right plastic material for your application.

 

Scott Petrowski Director of Supply Chain Management ThyssenKrupp Materials NA AIN Plastics DivisionScott Petrowski
Director of Supply Chain Management
ThyssenKrupp Materials NA
AIN Plastics Division

 

Machined Plastic Parts Provide Solutions for Noise Reduction

DSC_0193

The famous line from the 1993 Car-X commercial  “RATTLE RATTLE THUNDER CLATTER BOOM BOOM BOOM”** is a heads up for some people that improvements can be made to reduce noise. For engineers and operators these sounds on a manufacturing line or in a production environment are a trigger for to “investigate” the cause and dig into the field of tribology. In the field of engineered plastics, these noises can also be an opportunity to provide machined parts from thermoplastics as a solution for noise reduction and improved efficiency!

On the floor of production and manufacturing facility environments loud noises are an OSHA concern as they can be an issue for the health and safety of workers. In these situations, parts machined from thermoplastics can provide an design option that can greatly reduce noise levels and improve conditions. In addition, machined plastics can bring about increased efficiencies that reduce downtime.

“As with any occupational hazard, control technology should aim at reducing noise to acceptable levels by action on the work environment. Such action involves the implementation of any measure that will reduce noise being generated, and/or will reduce the noise transmission through the air or through the structure of the workplace. Such measures include modifications of the machinery”

Engineering Noise Control

Professor Colin H. Hansen & Dr Berenice I.F. Goelzer

Department of Mechanical Engineering – World Health Organization

(You can get a .pdf of their complete article on the topic of acoustics here)

Have you considered Thermoplastics, to reduce that noise and improve operational efficiency?

Key Characteristics of Plastic Components:

• Low weight – Easier handling, reduction in drive power required, improved lifting capacity

• Excellent price/performance ratio – Extended part life due to very high wear resistance

• Many are self-lubricating – Maintenance requirements can be reduced or eliminated

• Reduction of equipment noise and vibration

• Mating parts are not worn or damaged

• High mechanical strength, hardness and stiffness

• Impact strength even at low temperatures-cryogenic

• High mechanical dampening capacity

• Excellent fatigue resistance

• Good sliding and emergency running properties

• Outstanding abrasion resistance

• Dimensional stability and weather resistance

• Broad chemical resistance

• Will not corrode

IMG_0465 IMG_0496 UHMW-DSC_0056-2

Here are a few links to some other sources where you can learn more about the use of engineered plastics to help reduce noise and improve efficiency, plus a little link just for fun – in case you have never seen the 1993 commercial.

Connect with Vitrex on LinkedIn to see how a change to machined parts from PEEK helped to reduce noise caused by wind turbines.

Read more about tribology in one of an earlier AIN Plastics blog post by AIN Industry Segment Manager for DuPont™ Vespel® Paul Hanson.

If you don’t know the 1993 commercial we are referring to, no worries, you can find it on YouTube!

ASME (Americann Society of Mechanical Engineers) also has an excellent article that details the benefits many are finding as they replace metal parts with thermoplastic parts.

Finding the right thermoplastic for machined parts is not always a simple straight forward task of looking online or in a catalog. Today’s engineered plastics include thousands of options and many are specially designed with high wear applications in mind like bearing, bushings and more. As a provider of engineered plastic solutions we look to assist you in finding that just right plastic material that will meet the application specific needs and be the best possible value. In the end you may find benefits beyond noise reduction by changing from metal to plastic parts. If you have questions please contact me.

Montague-Sml-DSC_0304

Kendall Montague
Industry Segment Manager

thyssenkrupp Materials NA
AIN Plastics Division

Kendall Montague is a veteran of the plastics industry with 16+ years experience working with OEM and MRO engineers assisting in developing thermoplastics material selection as well as custom design and fabrication using CNC equipment.

Active Member with the Energy & Polymer Group – Houston
linkedin-logo-Icon

Designing with Thermoplastics in Pump & Valve Components

Why are thermoplastics (engineering plastics) replacing metals and becoming a popular option for machined parts? To answer this question we’ve got a few blog posts that look at different aspects of why people are saying yes to engineering plastics. Pumps and valves have been around for about as long as humans have been constructing things to make life easier. Today pumps and valves occupy places in nearly every industry from medical, laboratory and testing equipment, to oil and gas, agriculture, transportation, buildings and more.

Designing pump and valve components from thermoplastics has the benefit of being made from materials that are corrosion resistant. But, even plastics withstand varying physical elements in different ways so it’s important to understand how plastics can also be affected by the physical elements they will be exposed to. The chart below looks at some of the most common plastic resins and gives a general guideline for how they stand up to potential corrosive elements.

 

Chart of Chemical Resistance for Common Polymer Resins / Thermoplastics

 

CHEMICAL RESISTANCE POLYMER RESINSA Deeper Look at Corrosion and What it Is
Corrosion is the deterioration of a material and its physical properties, Corrosion of a material occurs because of an undesirable reaction with its surrounding environment. In valve applications chemicals may attack the exterior as well as the interior surfaces. As you can see from the chart above both acids and alkalis will attack some materials. Corrosion begins with pitting that is not even visible to the eye. But once it begins corrosion continues to grow and eventually it leads to part failure. But even before creating a leak, pits increase turbulence which affects performance.

Corrosion is caused by more than just hazardous chemicals. As you can see from the chart of common thermoplastics above, sometimes an apparently benign fluid can react, as when sea water flows over brass.

How Can Corrosion of Machined Parts Be Stopped?

The best and most cost-effective way of controlling corrosion is preventing it. Studies have shown that an overall cost savings of 40% can be achieved when corrosion is prevented rather than treated. Prevention entails selecting an engineering plastic that will work best with the media being transported through the device. Whether you are using metals or thermoplastics, all environmental factors should be considered, including cleaning agents and things that might not be thought of as highly corrosive. In some cases a sacrificial layer could be used but these will have a finite life, and as the name implies the sacrificial material needs to be closely monitored and it will still require downtime to apply a new sacrificial layer.

Many customers that replace metal valves and gaskets with engineered plastics often note a number of positive benefits even if the initial part costs more.

  • Reduced maintenance
  • Reduced Downtime 
  • Reduced incidence of part failure
  • Longer lasting parts
  • Overall cost savings
  • Smooth surfaces allow for increased velocity and precision control of flow

Customers with ultra-high purity such as medical device, food processing, or water treatment applications to name a few, require very smooth interior surfaces with absolutely no place for contamination to lurk and with no risk of particles breaking free and joining the fluid. Even microscopic pitting can be cause for parts to be replaced because the pitting can allow for bacteria contamination. Once pitting occurs it is virtually impossible to clean a valve or gasket to the high standards required for high purity applications.

The highly smooth surfaces that can be achieved with machined thermoplastic materials can also reduce turbulence in fluids being transported. This allows for fluids to flow at higher velocities and allows for precision control of pumps.

Beginning with careful material selection, research and talking to experienced plastic professionals can lead to designing pump and valve components that can improve performance and increase life from day-to-day to your most demanding applications.

Do you have questions about material selection for seals and valve gaskets like:

What are the lower cost and lighter weight options to metal-to-metal sealing?

We are having thermal degradation issues with plastics in valve components, can we improve this?

Our seals and gaskets have to withstand higher and higher operating pressure. What  materials have higher compressive capabilities and creep resistance?

These are all questions I am able to assist you with. Feel free to contact me at the information below.

 

 

Montague-Sml-DSC_0304Kendall Montague
Industry Segment Manager

thyssenkrupp Materials NA
AIN Plastics Division

 

Kendall Montague is a veteran of the plastics industry with 16+ years experience working with OEM and MRO engineers assisting in developing thermoplastics material selection as well as custom design and fabrication using CNC equipment.

Active Member with the Energy & Polymer Group – Houston
linkedin-logo-Icon

AIN Plastics Here Yesterday, Today, and Tomorrow

In the search for Engineering Plastics there are numerous online places and several good size distributors. AIN Plastics is one of those distributors and they have recently been growing and adding locations around the United States. Here we take a brief look at AIN Plastics yesterday, today and tomorrow, and we see good things ahead!

Initially AIN Plastics began as a One Stop Shop Plastics distributor based in Mt. Vernon New York. AIN serviced the local area and provided a large print catalog as well as a special school catalog helping to make machinable plastics a part of shop classes.

This slideshow requires JavaScript.

Back in the Day

The original AIN Plastics was a partnership between three gentleman, hence the name AIN. The remaining member of the original partners, Alex Gabay still resides in New York. Since his days with AIN Plastics he has enjoyed a quiet country life outside the city, but in a chat with him at a New York event last year, Alex talked about how he still loves to be able to visit New York City. He talked about how New York is a place that just gets into your blood. The “I” goes to a gentleman by the name of Irving. Unfortunately Irving passed away before things got underway, but the remaining partners kept the AIN name. Last but not least, Norman Drucker, the “N” in AIN continued on with Alex and was the hands on guy “in the pit”. In an early blog post about Mr. Drucker, it was noted by long time associate John Colleluori Norman “was right in there making it happen.” See more in our earlier post.

Since AIN Plastics became a part of ThyssenKrupp Materials NA in 1996 the company has seen an expansion into the western US. AIN Plastics President John Shepherd has seen the company through several new branch openings including the most recent locations, St. Louis, Missouri and Dallas Texas. In keeping with AIN Plastics focus on customer service each branch is staffed with branch managers, inside and outside sales staff that have a background in the plastics industry. Each branch is also able to offer custom cut to size on orders and customized inventory solutions. Additionally AIN is able to assist our customer with fabrication and other services.

In this day and age of online shopping where selecting a material is left to the customer to seek it out by way of google searches and shopping cart searches, AIN Plastics experienced staff is able to assist customers with the sometimes time consuming and tedious task of figuring out not only what is the best material, but what is the most cost effective material for a job. A little like Santa in “Miracle on Thirty Fourth Street” AIN sales people look to be partners in a customer’s business and that may mean selling a material that is not the necessarily the most expensive, but rather the one that fits the application at hand. As Engineering Plastics and High Performance Materials are more often used to replace metal parts and as machinable plastics become a part of today’s increasingly high tech world many factors in material selection are involved. For a more in depth look at this issue see our blog post on Engineering Plastics and the Plastics Pyramid.

Where can you find AIN Plastics Today?

AIN currently has 14 offices and 13 stocking locations in the US. Additionally we stock materials at ThyssenKrupp facilities in California for our West Coast customers. Thanks to ThyssenKrupp Logistics AIN is able to ship anywhere in the US even if no branch is present. For sales support AIN also has a Business Development Team that works across the US in specific markets assisting customers with material selection for specific applications.

Map---AIN-Locations

AIN Plastics Locations

Florida
8143 Eagle Palm Drive
Riverview, FL 33578
Georgia
1980 Shiloh Road
Building 7 Suite 150
Kennesaw, GA 30144
Illinois
300 County Line Road
Bensenville, IL 60106
Indiana
8129 Zionsville Rd.
Indianapolis, IN 46268
Massachusetts
110 Shawmut Road
Canton, MA 02021
Michigan
1750 E Heights Drive
Madison Heights, MI 48071
Missouri
13732 Rider Trail North
Earth City, MO 63045
New York
60 Fullerton Avenue
Yonkers, NY 10704
Ohio
1360 Boltonfield Street
Columbus, OH 43228
Pennsylvania
499 Running Pump Road
Suite 16
Lancaster, PA 17601
Texas
3001 Alouette Drive
Suite 100
Grand Prairie, TX 75052
Virgina
1347 Diamond Springs Road
Suite 100
Virginia Beach, VA 23455

What Is AIN Plastics Tomorrow Looking Like?

AIN Plastics focus remains the same as it has in years past. There is still one number to call and that number automatically puts you in contact with the branch nearest you. 877.246.7700. We look to being our customer’s partner for the long term. That means continuing to offer you, our customer,  more services. For those times you just need to place that quick order an online shopping solution is on its way! We are also continuing our educational efforts through our blog, social media and email blast from Constant Contact. We want our customers to be the most informed and educated users of Engineering Plastics and High Performance Materials out there because we know that means success with the materials you use, efficiency, and cost savings. All of those things combine to help all of us to keep our businesses growing and thriving from New York to, Florida, to St. Louis, and Dallas.

See you in the blogosphere again soon!

Lisa Anderson

Marketing Manager
ThyssenKrupp Materials, NA
AIN Plastics Division

 

_N1C1196-Edit-cropAbout Lisa Anderson
Ms. Anderson has been ThyssenKrupp Materials AIN Plastics Division for over 2 years. She brings 20+ years of advertising, award winning graphic design, social media and marketing. She has worked in book publishing, advertising agencies, printing, manufacturing, and the apartment industry. Ms. Anderson has a Bachelor of Fine Arts in Studio Arts from Calvin College, Grand Rapids, MI.

To learn more about AIN Plastics visit us at tkmna.com

Keep up with AIN Plastics on your favorite social media

Facebook     Pinterest     LinkedIn

For more information on ThyssenKrupp Materials see a recent article on their history and growth 

What is Fracking and How does it Work?

Fracking is a slang term for hydraulic fracturing, a process that maximizes the output of natural gas and oil wells to make them productive.

How does hydraulic fracturing work?

When a well is fractured, an operator pumps a mixture of water, sand and a small amount
of chemicals into an oil or gas formation deep underground and applies pressure. The pressure fractures rock layers, releasing oil or gas reserves. The sand holds the fractures open to continue allowing the oil or gas to flow into the well.

Illustration---Fracking-01

As gas or oil comes to the well head under pressure, it brings with it the fracturing water that was pumped, along with natural brines that are present in the deeper layers of the earth. That “flowback” water is separated from the gas and oil at the surface, contained in steel tanks, and sent to deep injection wells for disposal.

Is hydraulic fracturing new?

No. Gas and oil operators have been using hydraulic fracturing around the country since it’s invention by George Mitchell in the late 1940s. (See article link below)

One popular method for creating fractures is the use of frac ports and sliding sleeves. Open hole packers isolate different sections of the horizontal well. A sliding sleeve is placed between each packer pair and is opened by injecting a ball inside the borehole. Typically, a completion string is placed inside the well. The string includes frac ports and open hole packers spaced to specifications.

Frac balls, typically made from an Engineering Plastic, are critical components in cutting edge downhole tooling used in hydraulic fracturing operations. Typically when creating multiple fractures in a wellbore, a completion string is placed inside the borehole with frac ports and sliding sleeves spaced between each section. In order to actuate each sleeve a properly sized frac ball is pumped along with the fracturing fluid inside the well.

Each ball is smaller than the opening in each of the previous sleeves but larger than the hole in the sleeve it is intended to open. The ball shall seat within the sleeve, closing the hole and exerting pressure to slide open the sleeve, opening the frac ports. Once the ports are open the fracturing fluid is diverted to the open hole space outside of the completion assembly causing the surrounding formation to fracture.

At the completion of each fracturing stage, the next sized ball is injected into the well causing the next sleeve to open and so on until all of the sleeves are open and multiple fractures are created within the well. The main advantages of this process being the speed with which the well can be penetrated hence reducing cost.

Engineering Plastics used in Hydraulic Fracturing

  • PEEK
  • TORLON®
  • G10-G11-FR4
  • DuPont™ Vespel®

The Engineering Plastics listed above are commonly found in seals, bushings, thrust washers, back-up rings, and logging tools. Many have properties that provide longer wear and high temperature resistance than more traditional materials.

As in nearly all industries today,  Engineered Plastics are becoming widely accepted as a solution to  bearing and wear issues. The oil and gas industry is no exception.  Engineered Plastics have been found to alleviate  some headaches in the extreme conditions the oil and gas industry meets when drilling deeper to tap into new resources.

Kendall Montague

National Sales Manager Oil & Gas
Thyssenkrupp Materials NA AIN Plastics Division

Connect with me on LinkedIn

 

Links to Related Items:

Animation of Baker Hughes completion and frac ball application. Frac Ball Application by Baker Hughes

Related Article: George Mitchell – The Inventor of Fracking 

ThyssenKrupp Materials NA AIN Plastics Division is a sponsor of the Energy Rubber Group

 

Engineering Plastics use Grows in Food Processing Equipment

iStock_000014977093LargeEngineering Plastics continue to replace metals as key components in food processing equipment. Plastics are often lighter and able to outlast traditional metal parts. A quick look through the variety of plastics available in today’s market shows an increasing number of engineering plastics that are compliant to FDA, USDA, 3A Dairy standards making them available in applications where they will come into direct contact with food. They are also being chosen for their
ability to create a quieter work environment.

With 2014 looking to be a great year for Food Processing equipment sales I wanted to share what we most find in food processing applications and why.

UHMW
UHMW continues to lead the way (by pounds sold in the United States) in the transformation from metal to plastic parts.  For more information on materials sold in the U.S. see this article by the American Chemical Council. Compared to steel UHMW is just 1/7th the weight. In addition UHMW is corrosion resistant. UHMW is a great option for room temperature applications like guides, paddles, and cutting surfaces.  Recent advances include the introduction of metal detectable versions that can be recognized by your detection systems in line.

Nylons
For bearing and wear applications, Nylon materials have been the workhorse for over 30 years.  Like UHMW, Nylon is also light weight, and provides lubrication – free operation making it a great material for producing bearings or bushings.  Gears and sprockets made of Nylon have been popular because they can reduce noise in work areas. They can also improve the efficiency of production lines conveying food and liquids in your plants by lasting longer than metals, which reduces downtime, and by allowing lines to run faster.

Acetals
For many components, Acetal is the best choice for metal replacement, and we find its popularity is growing quickly in the food processing industry.  Acetal (Delrin Homopolymer or CoPolymer brands like Acetron GP and Celcon) are very easy to machine, and their very low moisture absorption rates make them a good choice for the often wet environment of food processing.  Acetals are harder than Nylons and maintain dimensional stability where Nylons tend to be more flexible. In many applications Acetals can handle continuous use temperatures up to 210° F and they are typically compatible with most cleaning solutions, a huge plus in the food processing industry.

ERTALYTE®
A popular speciality material is Quadrant Engineering Plastics Ertalyte material.  Ertalyte has unique properties that allow it to wear like Acetal in wet environments and like Nylon in dry or unlubricated environments.  I like to think of it as giving you the best of both worlds! Ertalyte also is highly resistant to stains generated by things like tomato based sauces and green vegetables.  Ertalyte also has high dimensional stability that meets the demands of the highly precise machining tolerances required in filling pistons and fluid manifolds.

In looking to the future of food processing the demands are heavy. Companies are working hard to keep consumer prices in line while still making a profit. Food processing companies are achieving these goals by improving efficiency and creating better work environments. Plastics are an increasingly big part of the solution because their use in parts can improve line speeds, decrease maintenance downtime, and even make for a quieter work environment.

As I look at the Engineering Plastics and High Performance Materials we have here at AIN Plastics I’m pleased to see how they are being used to improve the food processing industry and I’m excited to see the new applications our customers are working on as well as the new materials our suppliers are always working on. If you have an application you’ve been scratching your head over, give us a call. We know there are lots of options and we can help you take some of the guess work out of finding out if Engineering Plastics are right for your application.

Paul Hanson

Sales and Marketing Manager
DuPont Vespel®
ThyssenKrupp Materials NA
AIN Plastics Division

email: paul.hanson@thyssenkrupp.com

For more information on Engineering Plastics visit http://www.tkmna.com/tkmna/Products/Plastics/Engineering/index.html